Positive k-spanning sets and their use in Derivative Free Optimization

S. Kerleau, G. Jarry-Bolduc, C. Royer, W. Hare

SIAM, Seattle June 2023

2 Cosine measure

3 Positive k-Spanning Sets

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize f(x)?

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize f(x)? (Assumption: We cannot rely on ∇f).

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize f(x)? (Assumption: We cannot rely on ∇f).

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize f(x)? (Assumption: We cannot rely on ∇f).

We use derivative free algorithms. Basic idea:

• Inputs: A good candidate x_0 , a set $D = \{d_1, \ldots, d_s\}$.

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize f(x)? (Assumption: We cannot rely on ∇f).

- Inputs: A good candidate x_0 , a set $D = \{d_1, \ldots, d_s\}$.
- For all *i*, compare $f(x_0)$ to $f(x_0 + \alpha d_i)$.

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize f(x)? (Assumption: We cannot rely on ∇f).

- Inputs: A good candidate x_0 , a set $D = \{d_1, \ldots, d_s\}$.
- For all *i*, compare $f(x_0)$ to $f(x_0 + \alpha d_i)$.
- If $f(x_0)$ is smaller, decrease α .

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize f(x)? (Assumption: We cannot rely on ∇f).

- Inputs: A good candidate x_0 , a set $D = \{d_1, \ldots, d_s\}$.
- For all *i*, compare $f(x_0)$ to $f(x_0 + \alpha d_i)$.
- If $f(x_0)$ is smaller, decrease α .
- Otherwise replace x_0 with a better candidate.

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize f(x)? (Assumption: We cannot rely on ∇f).

We use derivative free algorithms. Basic idea:

- Inputs: A good candidate x_0 , a set $D = \{d_1, \ldots, d_s\}$.
- For all *i*, compare $f(x_0)$ to $f(x_0 + \alpha d_i)$.
- If $f(x_0)$ is smaller, decrease α .
- Otherwise replace x_0 with a better candidate.

If the elements of D are well spread in \mathbb{R}^n , the algorithm will converge.

Definition

A **PSS** spans \mathbb{R}^n with positive linear combinations. A **positive basis** is minimal for this property.

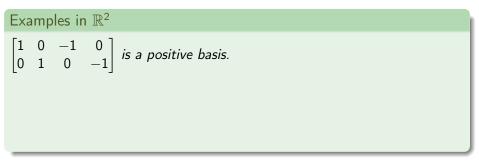
Remark

If the columns of matrix M form a PSS, we say that M is a PSS.

PkSSs and their use in DFO

Definition

A **PSS** spans \mathbb{R}^n with positive linear combinations. A **positive basis** is minimal for this property.



Remark

Definition

A **PSS** spans \mathbb{R}^n with positive linear combinations. A **positive basis** is minimal for this property.

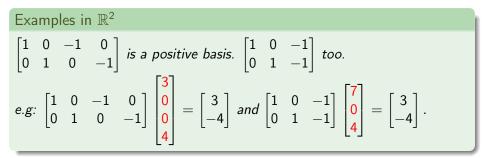
Examples in
$$\mathbb{R}^2$$

 $\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$ is a positive basis. $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$ too.

Remark

Definition

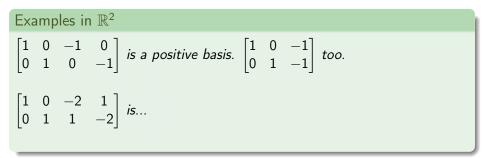
A **PSS** spans \mathbb{R}^n with positive linear combinations. (or non-negative.) A **positive basis** is minimal for this property.



Remark

Definition

A **PSS** spans \mathbb{R}^n with positive linear combinations. A **positive basis** is minimal for this property.



Remark

Definition

A **PSS** spans \mathbb{R}^n with positive linear combinations. A **positive basis** is minimal for this property.

Examples in
$$\mathbb{R}^2$$

 $\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$ is a positive basis. $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$ too.
 $\begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 1 & -2 \end{bmatrix}$ is a PSS. $\begin{bmatrix} 0 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$ is a positive basis.

Remark

Cardinal

Proposition

The smallest possible size for a positive basis of \mathbb{R}^n is n + 1. The biggest possible size is 2n.

Proof (idea)

- Lower bound: a PSS must clearly be larger than a linear basis.
- Upper bound: Trickier. Proven using linear programming arguments.

Farkas Lemma

Lemma

Let $M \in \mathbb{R}^{n,m}$, let $b \in \mathbb{R}^n$. Exactly one of the two following assertions is true:

- Equation Mx = b has a solution $x \ge 0$.
- Inequation $y^{\top}M \ge 0$ has a solution y such that $y^{\top}b < 0$.

Farkas Lemma

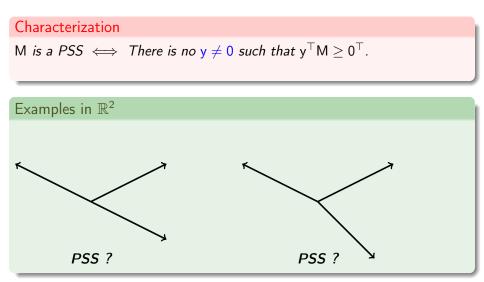
Lemma

Let $M \in \mathbb{R}^{n,m}$, let $b \in \mathbb{R}^n.$ Exactly one of the two following assertions is true:

- Equation Mx = b has a solution $x \ge 0$. Always true for PSSs.
- Inequation $y^\top M \geq 0$ has a solution y such that $y^\top b < 0.$

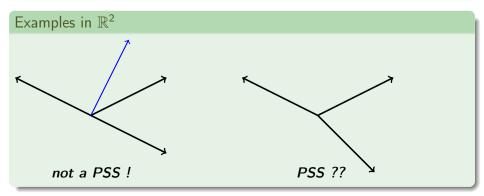
Remark

When M is a PSS, the second assertion is false for all b !



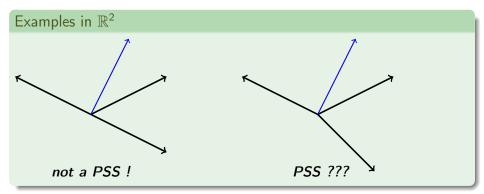
Characterization

 $M \text{ is a } PSS \iff There \text{ is no } y \neq 0 \text{ having an acute angle with every element of } M.$



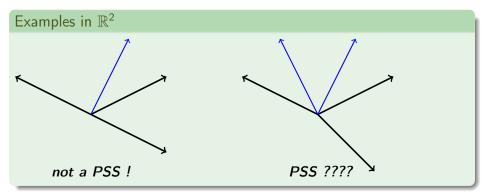
Characterization

 $M \text{ is a } PSS \iff There \text{ is no } y \neq 0 \text{ having an acute angle with every element of } M.$



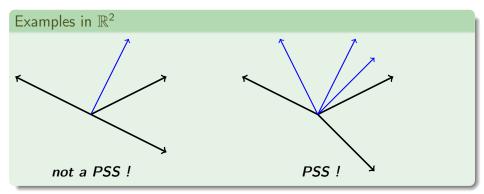
Characterization

 $M \text{ is a } PSS \iff There \text{ is no } y \neq 0 \text{ having an acute angle with every element of } M.$



Characterization

M is a PSS \iff There is no y \neq 0 having an acute angle with every element of M. Only a finite number of checks are required !



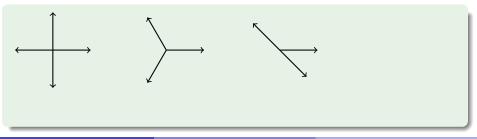
3 Positive k-Spanning Sets

Definition

Let $M = \{d_1, \dots, d_m\} \subset \mathbb{R}^n$. The cosine measure of M is defined as:

$$cm(M) := \min_{\mathbf{v} \neq 0} \max_{i \in [1,m]} \frac{\mathsf{d}_i^\top \mathbf{v}}{\|\mathsf{d}_i\| . \|\mathbf{v}\|}.$$

Characterization

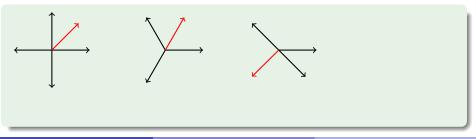


Definition

Let $M = \{d_1, \dots, d_m\} \subset \mathbb{R}^n$. The cosine measure of M is defined as:

$$cm(M) := \min_{\mathbf{v} \neq 0} \max_{i \in [1,m]} \frac{\mathsf{d}_i^\top \mathbf{v}}{\|\mathsf{d}_i\| . \|\mathbf{v}\|}.$$

Characterization

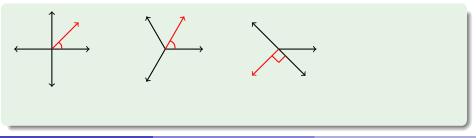


Definition

Let $M = \{d_1, \dots, d_m\} \subset \mathbb{R}^n$. The cosine measure of M is defined as:

$$cm(M) := \min_{\mathbf{v} \neq 0} \max_{i \in [1,m]} \frac{\mathsf{d}_i^\top \mathbf{v}}{\|\mathsf{d}_i\| . \|\mathbf{v}\|}.$$

Characterization

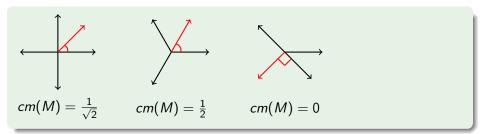


Definition

Let $M = \{d_1, \dots, d_m\} \subset \mathbb{R}^n$. The cosine measure of M is defined as:

$$cm(M) := \min_{\mathbf{v} \neq 0} \max_{i \in [1,m]} \frac{\mathsf{d}_i^\top \mathbf{v}}{\|\mathsf{d}_i\| . \|\mathbf{v}\|}.$$

Characterization



Computing the cosine measure

Theorem

Let $D_{\mathbb{R}^n}$ be a positive basis of \mathbb{R}^n .

• If
$$|D_{\mathbb{R}^n}| = 2n$$
, then $cm(D_{\mathbb{R}^n}) \leq \frac{1}{\sqrt{n}}$.

• If
$$|D_{\mathbb{R}^n}| = n+1$$
 then $cm(D_{\mathbb{R}^n}) \leq rac{1}{n}$

Computing the cosine measure

Theorem

Let $D_{\mathbb{R}^n}$ be a positive basis of \mathbb{R}^n .

• If $|D_{\mathbb{R}^n}| = 2n$, then $cm(D_{\mathbb{R}^n}) \leq \frac{1}{\sqrt{n}}$.

• If
$$|D_{\mathbb{R}^n}| = n+1$$
 then $cm(D_{\mathbb{R}^n}) \leq rac{1}{n}$

 It is better to use PSSs whose cosine measure is close to 1 for optimization purposes...

Computing the cosine measure

Theorem

Let $D_{\mathbb{R}^n}$ be a positive basis of \mathbb{R}^n .

• If $|D_{\mathbb{R}^n}| = 2n$, then $cm(D_{\mathbb{R}^n}) \leq \frac{1}{\sqrt{n}}$.

• If
$$|D_{\mathbb{R}^n}| = n+1$$
 then $cm(D_{\mathbb{R}^n}) \leq rac{1}{n}$

- It is better to use PSSs whose cosine measure is close to 1 for optimization purposes...
- ...However, algorithms to find the cosine measure of a PSS are exponential in time.

Orthogonally structured positive bases

Definition

Positive basis $D_{\mathbb{R}^n}$ of \mathbb{R}^n is an OSPB if:

 It can be written as a partition of positive bases for smaller linear spaces:

$$\mathsf{D}_{\mathbb{R}^n} = \mathsf{D}_{\mathbb{L}_1} \cup \cdots \cup \mathsf{D}_{\mathbb{L}_s}.$$

• These bases are pairwise orthogonal and of minimal size.

Examples		
$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 4 & 0 & -5 \\ 2 & 0 & 0 & -2 & 0 \\ 0 & 3 & 5 & 0 & -8 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ 1 & -1 & -1 \\ 1 & -1 & -1$	$egin{array}{cccccc} -1 & 2 & -1 & -1 \ -1 & -1 & 1 & 0 \ -1 & -1 & 0 & 1 \end{array} ight].$

Orthogonally structured positive bases

Definition

Positive basis $D_{\mathbb{R}^n}$ of \mathbb{R}^n is an OSPB if:

 It can be written as a partition of positive bases for smaller linear spaces:

$$\mathsf{D}_{\mathbb{R}^n}=\mathsf{D}_{\mathbb{L}_1}\cup\cdots\cup\mathsf{D}_{\mathbb{L}_s}.$$

• These bases are pairwise orthogonal and of minimal size.

Examples

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 4 & 0 & -5 \\ 2 & 0 & 0 & -2 & 0 \\ 0 & 3 & 5 & 0 & -8 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 & -1 & -1 \\ 1 & -1 & -1 & 1 & 0 \\ 1 & -1 & -1 & 0 & 1 \end{bmatrix}.$$

Cosine measure of an OSPB

Theorem (new !)

The cosine measure of an OSPB can be computed in polynomial time !

Cosine measure of an OSPB

Theorem (new !)

The cosine measure of an OSPB can be computed in polynomial time !

Algorithm: cosine measure of an OSPB

• Step 1: Find an orthogonal decomposition for your basis.

Cosine measure of an OSPB

Theorem (new !)

The cosine measure of an OSPB can be computed in polynomial time !

Algorithm: cosine measure of an OSPB

- Step 1: Find an orthogonal decomposition for your basis.
- Step 2: For any set $D_{\mathbb{L}_i}$ in the decomposition, compute its induced cosine measure c_i .

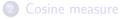
Cosine measure of an OSPB

Theorem (new !)

The cosine measure of an OSPB can be computed in polynomial time !

Algorithm: cosine measure of an OSPB

- Step 1: Find an orthogonal decomposition for your basis.
- Step 2: For any set $D_{\mathbb{L}_i}$ in the decomposition, compute its induced cosine measure c_i .
- Step 3: Return $\frac{1}{\sqrt{\sum\limits_{i} c_i^{-2}}}$.



Applications

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize f(x)? (Assumption: We cannot rely on ∇f).

We use derivative free algorithms. Basic idea:

- Inputs: A good candidate x_0 , a set $D = \{d_1, \ldots, d_s\}$.
- For all *i*, compare $f(x_0)$ to $f(x_0 + \alpha d_i)$.
- If $f(x_0)$ is smaller, decrease α .
- Otherwise replace x_0 with a better candidate.

Applications

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize f(x)? (Assumption: We cannot rely on ∇f).

We use derivative free algorithms. Basic idea:

- Inputs: A good candidate x_0 , a set $D = \{d_1, \ldots, d_s\}$.
- For all *i*, compare $f(x_0)$ to $f(x_0 + \alpha d_i)$.
- If $f(x_0)$ is smaller, decrease α .
- Otherwise replace x_0 with a better candidate.

What if we have trouble computing $f(x_0 + \alpha d_i)$?

Positive k-spanning sets, Positive k-bases

Definition

A PkSS remains positively spanning when k - 1 of its elements are removed. A **positive** k-basis is a minimal PkSS.

Examples of positive 2-bases in \mathbb{R}^2

$$\begin{bmatrix} 1 & 0 & -1 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 & 1 & -1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & -1 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 & 1 & -1 \end{bmatrix}$$

Remark

 $P1SS \iff PSS$

Positive k-spanning sets, Positive k-bases

Definition

At least k elements must be removed from a PkSS before it stops being positively spanning. A **positive** k-**basis** is a minimal PkSS.

Examples of positive 2-bases in \mathbb{R}^2

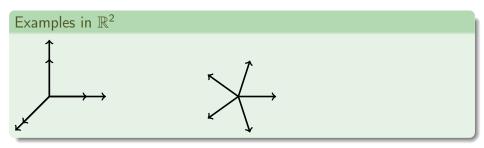
$$\begin{bmatrix} 1 & 0 & -1 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 & 1 & -1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & -1 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 & 1 & -1 \end{bmatrix}$$

Remark

 $P1SS \iff PSS$

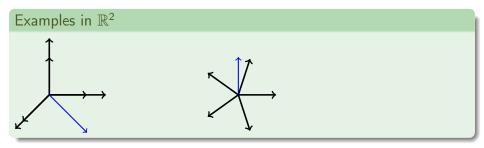
Characterization

M is a PkSS \iff For all $y \neq 0$, vector $y^{\top}M$ has at least k positive coordinates.



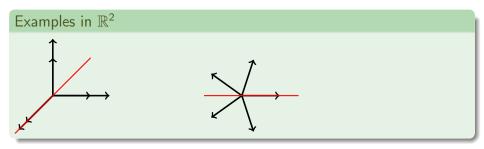
Characterization

M is a PkSS \iff For all $y \neq 0$, vector $y^{\top}M$ has at least k positive coordinates. \iff y makes an acute angle with at least k elements of M.



Characterization

M is a PkSS \iff For any hyperplane, at least k elements of M point on each side of the hyperplane.



Cardinal of positive k-bases

Proposition

Let $D_{\mathbb{R}^n}$ be a positive basis of \mathbb{R}^n . Then $n+1 \leq |D_{\mathbb{R}^n}| \leq 2n$.

Can this be generalized ? Let us try...

Cardinal of positive k-bases

Proposition

Let $D_{\mathbb{R}^n}$ be a positive basis of \mathbb{R}^n . Then $n+1 \leq |D_{\mathbb{R}^n}| \leq 2n$.

Can this be generalized ? Let us try...

Remark

 The hyperplane characterization implies a lower bound of 2k + n − 1 on the size of a PkSS. Tight (Marcus, 1984).

Cardinal of positive k-bases

Proposition

Let $D_{\mathbb{R}^n}$ be a positive basis of \mathbb{R}^n . Then $n+1 \leq |D_{\mathbb{R}^n}| \leq 2n$.

Can this be generalized ? Let us try...

Remark

- The hyperplane characterization implies a lower bound of 2k + n 1 on the size of a PkSS. Tight (Marcus, 1984).
- Digraphs can be used to create positive k-bases. In that case, the maximal size is 2kn.

PkSSs and Polytope theory

Definition

Let $M \in \mathbb{M}_{n,m}(\mathbb{R})$. Any full rank matrix B such that $MB^{\top} = 0$ is called a **Gale diagram** of M.

Theorem

Suppose
$$M = \begin{bmatrix} P \\ 1 & \dots & 1 \end{bmatrix}$$
. Then any Gale diagram of M is a PkSS.

Polytopes and cardinality of positive k-bases

Theorem

Let
$$D_{\mathbb{R}^n}^{(k)}$$
 be a positive k-basis of \mathbb{R}^n . Then :

$$2k + n - 1 \le |D_{\mathbb{R}^n}^{(k)}| \le kn(n+1)^{k-1}$$

Remark

- The lower bound is tight (eg: pentagon).
- The upper bound might not be. (Wotzlaw, 2009)

3 Positive k-Spanning Sets

A new tool for characterizing PkSSs

Definition (new !) Let $k \ge 1$ and $M \subset \mathbb{R}^n \setminus \{0\}$. The k-cosine measure of M is: $cm_k(M) := \min_{\substack{v \ne 0 \ S \subset M \ S \in S}} \min_{\substack{s \in S}} \frac{s^\top v}{\|s\| . \|v\|}.$ A new tool for characterizing PkSSs

Definition (new !) Let $k \ge 1$ and $M \subset \mathbb{R}^n \setminus \{0\}$. The k-cosine measure of M is: $cm_k(M) := \min_{\substack{v \ne 0 \ S \subset M \ S \in S}} \min_{\substack{s \in S \ \|S\| \cdot \|v\|}} \cdot$

Remark

 $cm_1(M) = cm(M).$

A new tool for characterizing PkSSs

Definition (new !) Let $k \ge 1$ and $M \subset \mathbb{R}^n \setminus \{0\}$. The k-cosine measure of M is:

$$cm_k(\mathsf{M}) := \min_{\substack{\mathsf{v} \neq 0}} \max_{\substack{\mathsf{S} \subset \mathsf{M} \\ |\mathsf{S}| = k}} \min_{\substack{\mathsf{s} \in \mathsf{S}}} \frac{\mathsf{s}^\top \mathsf{v}}{\|\mathsf{s}\| . \|\mathsf{v}\|}$$

Theorem

M is a PkSS if and only if $cm_k(M) > 0$.

Remark

 $cm_1(M) = cm(M).$

Theorem

Let $k \geq 1$ and $M \subset \mathbb{R}^n \setminus \{0\}$. Then:

$$cm_k(\mathsf{M}) = \min_{\substack{\mathsf{S} \subset \mathsf{M} \\ |\mathsf{S}| = |\mathsf{M}| - k + 1}} cm(\mathsf{S}).$$

Theorem

Let $k \geq 1$ and $M \subset \mathbb{R}^n \setminus \{0\}$. Then:

$$cm_k(\mathsf{M}) = \min_{\substack{\mathsf{S}\subset\mathsf{M}\\|\mathsf{S}|=|\mathsf{M}|-k+1}} cm(\mathsf{S}).$$

Remark

 cm(M) is computed by finding a vector as far as possible from its closest neighbor in M.

Theorem

Let $k \geq 1$ and $M \subset \mathbb{R}^n \setminus \{0\}$. Then:

$$cm_k(\mathsf{M}) = \min_{\substack{\mathsf{S}\subset\mathsf{M}\\|\mathsf{S}|=|\mathsf{M}|-k+1}} cm(\mathsf{S}).$$

Remark

- cm(M) is computed by finding a vector as far as possible from its closest neighbor in M.
- cm_k(M) is computed by finding a vector as far as possible from its kth closest neighbor in M.

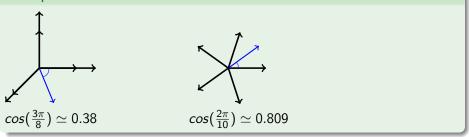
Examples

Remark

 $cm_1(M)$ is computed by finding a vector as far as possible from its closest neighbor in M.

Computing the cosine measure:

Examples



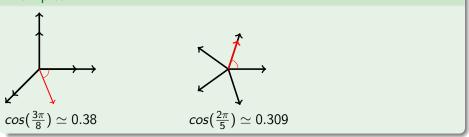
Examples

Remark

 $cm_2(M)$ is computed by finding a vector as far as possible from its second closest neighbor in M.

Computing the 2-cosine measure:

Examples



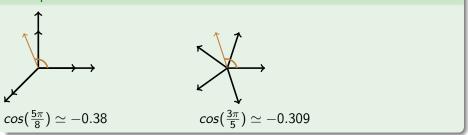
Examples

Remark

 $cm_3(M)$ is computed by finding a vector as far as possible from its third closest neighbor in M.

Computing the 3-cosine measure:

Examples



Basic remarks of the k-cosine measure

There is no easy way to compute the k-cosine measure of a given family. Let us focus on finding bounds.

Basic remarks of the k-cosine measure

There is no easy way to compute the k-cosine measure of a given family. Let us focus on finding bounds.

Remark

• Let k < I. Then $cm_k(M) \ge cm_l(M)$.

Basic remarks of the k-cosine measure

There is no easy way to compute the k-cosine measure of a given family. Let us focus on finding bounds.

Remark

- Let k < I. Then $cm_k(M) \ge cm_l(M)$.
- Let $N \subseteq M$. Then $cm_k(N) \leq cm_k(M)$.

There is no easy way to compute the k-cosine measure of a given family. Let us focus on finding bounds.

Remark

- Let k < I. Then $cm_k(M) \ge cm_I(M)$.
- Let $N \subseteq M$. Then $cm_k(N) \leq cm_k(M)$.
- If cm(M) = α, duplicating M creates a PkSS whose k-cosine measure is α.

Rotating PSSs

Proposition

Let $D_{\mathbb{R}^n} \subset \mathbb{R}^n \setminus \{0\}$ be an OSPB. Stacking together k rotations of $D_{\mathbb{R}^n}$ creates a PkSS $D_{\mathbb{R}^n}^{(k)}$ satisfying:

 $cm_k(D^{(k)}_{\mathbb{R}^n}) \geq cm(D_{\mathbb{R}^n}).$

Rotating PSSs

Proposition

Let $D_{\mathbb{R}^n} \subset \mathbb{R}^n \setminus \{0\}$ be an OSPB. Stacking together k rotations of $D_{\mathbb{R}^n}$ creates a PkSS $D_{\mathbb{R}^n}^{(k)}$ satisfying:

$$cm_k(D^{(k)}_{\mathbb{R}^n}) \geq cm(D_{\mathbb{R}^n}).$$

Remark

Unfortunately, this PkSS might not be a positive k-basis.

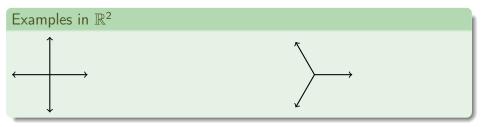
Rotating minimal bases

Theorem

Rotating minimal positive bases can create positive k-bases.

Idea: apply small rotations.

Note: this technique only works for minimal positive bases !



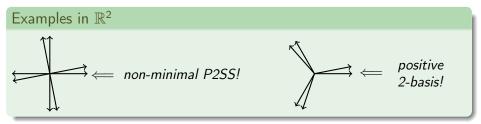
Rotating minimal bases

Theorem

Rotating minimal positive bases can create positive k-bases.

Idea: apply small rotations.

Note: this technique only works for minimal positive bases !



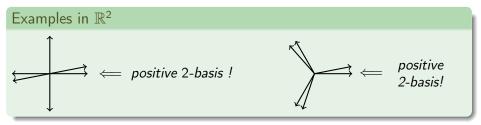
Rotating minimal bases

Theorem

Rotating minimal positive bases can create positive k-bases.

Idea: apply small rotations.

Note: this technique only works for minimal positive bases !



• PkSSs are a generalization of PSSs.

- PkSSs are a generalization of PSSs.
- New tools such as the k-cosine measure can be used to study them.

- PkSSs are a generalization of PSSs.
- New tools such as the k-cosine measure can be used to study them.

Perspectives

• Finding new ways to build "nice" PkSSs.

- PkSSs are a generalization of PSSs.
- New tools such as the k-cosine measure can be used to study them.

Perspectives

- Finding new ways to build "nice" PkSSs.
- Using PkSSs in Derivative Free Algorithms.

Thanks for your attention !