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Applications

Question
Let f : Rn −→ R be a smooth function. How can we minimize f (x) ?

(Assumption: We cannot rely on ∇f ).

We use derivative free algorithms. Basic idea:
Inputs: A good candidate x0, a set D = {d1, . . . , ds}.
For all i , compare f (x0) to f (x0 + αdi ).
If f (x0) is smaller, decrease α.
Otherwise replace x0 with a better candidate.

If the elements of D are well spread in Rn, the algorithm will converge.
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Positive Spanning Sets and Positive Bases

Definition
A PSS spans Rn with positive linear combinations.
A positive basis is minimal for this property.

Examples in R2[
1 0 −1 0
0 1 0 −1

]
is a positive basis.

[
1 0 −1
0 1 −1

]
too.

e.g:
[
1 0 −1 0
0 1 0 −1

]
3
0
0
4

 =

[
3
−4

]
and

[
1 0 −1
0 1 −1

]7
0
4

 =

[
3
−4

]
.

Remark
If the columns of matrix M form a PSS, we say that M is a PSS.
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Positive Spanning Sets and Positive Bases

Definition
A PSS spans Rn with positive linear combinations.
A positive basis is minimal for this property.

Examples in R2[
1 0 −1 0
0 1 0 −1

]
is a positive basis.

[
1 0 −1
0 1 −1

]
too.

[
1 0 −2 1
0 1 1 −2

]
is...


1
0
0
2


Remark
If the columns of matrix M form a PSS, we say that M is a PSS.
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Positive Spanning Sets and Positive Bases

Definition
A PSS spans Rn with positive linear combinations.
A positive basis is minimal for this property.

Examples in R2[
1 0 −1 0
0 1 0 −1

]
is a positive basis.

[
1 0 −1
0 1 −1

]
too.

[
1 0 −2 1
0 1 1 −2

]
is a PSS.

[
0 −2 1
1 1 −2

]
is a positive basis.


1
0
0
2


Remark
If the columns of matrix M form a PSS, we say that M is a PSS.
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Cardinal

Proposition
The smallest possible size for a positive basis of Rn is n + 1.
The biggest possible size is 2n.

Proof (idea)
Lower bound: a PSS must clearly be larger than a linear basis.
Upper bound: Trickier. Proven using linear programming arguments.
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Farkas Lemma

Lemma
Let M ∈ Rn,m, let b ∈ Rn. Exactly one of the two following assertions is
true:

Equation Mx = b has a solution x ≥ 0.
Inequation y⊤M ≥ 0 has a solution y such that y⊤b < 0.

Remark
When M is a PSS, the second assertion is false for all b !
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Let M ∈ Rn,m, let b ∈ Rn. Exactly one of the two following assertions is
true:

Equation Mx = b has a solution x ≥ 0. Always true for PSSs.
Inequation y⊤M ≥ 0 has a solution y such that y⊤b < 0.

Remark
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Characterization of PSSs

Characterization
M is a PSS ⇐⇒ There is no y ̸= 0 such that y⊤M ≥ 0⊤.

Only a finite
number of checks are required !

Examples in R2

PSS ? PSS ?

not a PSS ! PSS ???PSS ????PSS !
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Characterizing PSSs via the cosine measure

Definition
Let M = {d1, . . . , dm} ⊂ Rn. The cosine measure of M is defined as:

cm(M) := min
v ̸=0

max
i∈[1,m]

di
⊤v

∥di∥.∥v∥
.

Characterization
M is a PSS ⇐⇒ cm(M) > 0.

cm(M) = 1√
2 cm(M) = 1

2 cm(M) = 0
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Computing the cosine measure

Theorem
Let DRn be a positive basis of Rn.

If |DRn | = 2n, then cm(DRn) ≤ 1√
n
.

If |DRn | = n + 1 then cm(DRn) ≤ 1
n .

It is better to use PSSs whose cosine measure is close to 1 for
optimization purposes...
...However, algorithms to find the cosine measure of a PSS are
exponential in time.
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Orthogonally structured positive bases

Definition
Positive basis DRn of Rn is an OSPB if:

It can be written as a partition of positive bases for smaller linear
spaces:

DRn = DL1 ∪ · · · ∪ DLs .

These bases are pairwise orthogonal and of minimal size.

Examples[
1 0 −1 0
0 1 0 −1

] 0 1 4 0 −5
2 0 0 −2 0
0 3 5 0 −8

 1 −1 2 −1 −1
1 −1 −1 1 0
1 −1 −1 0 1

.

PkSSs and their use in DFO June 2023 11 / 27



Orthogonally structured positive bases

Definition
Positive basis DRn of Rn is an OSPB if:

It can be written as a partition of positive bases for smaller linear
spaces:

DRn = DL1 ∪ · · · ∪ DLs .

These bases are pairwise orthogonal and of minimal size.

Examples[
1 0 −1 0
0 1 0 −1

] 0 1 4 0 −5
2 0 0 −2 0
0 3 5 0 −8

 1 −1 2 −1 −1
1 −1 −1 1 0
1 −1 −1 0 1

.

PkSSs and their use in DFO June 2023 11 / 27



Cosine measure of an OSPB

Theorem (new !)
The cosine measure of an OSPB can be computed in polynomial time !

Algorithm: cosine measure of an OSPB

Step 1: Find an orthogonal decomposition for your basis.
Step 2: For any set DLi

in the decomposition, compute its induced
cosine measure ci .
Step 3: Return 1√∑

i
c−2
i

.
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Applications

Question
Let f : Rn −→ R be a smooth function. How can we minimize f (x) ?
(Assumption: We cannot rely on ∇f ).

We use derivative free algorithms. Basic idea:
Inputs: A good candidate x0, a set D = {d1, . . . , ds}.
For all i , compare f (x0) to f (x0 + αdi ).
If f (x0) is smaller, decrease α.
Otherwise replace x0 with a better candidate.

What if we have trouble computing f (x0 + αdi ) ?
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Positive k-spanning sets, Positive k-bases

Definition
A PkSS remains positively spanning when k − 1 of its elements are
removed. A positive k-basis is a minimal PkSS.

Examples of positive 2-bases in R2[
1 0 −1 1 0 −1
0 1 −1 0 1 −1

] [
1 0 −1 0 1 −1
0 1 0 −1 1 −1

]

Remark
P1SS ⇐⇒ PSS
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Positive k-spanning sets, Positive k-bases

Definition
At least k elements must be removed from a PkSS before it stops being
positively spanning. A positive k-basis is a minimal PkSS.

Examples of positive 2-bases in R2[
1 0 −1 1 0 −1
0 1 −1 0 1 −1

] [
1 0 −1 0 1 −1
0 1 0 −1 1 −1

]

Remark
P1SS ⇐⇒ PSS

PkSSs and their use in DFO June 2023 14 / 27



Alternative definition

Characterization
M is a PkSS ⇐⇒ For all y ̸= 0, vector y⊤M has at least k positive
coordinates.

⇐⇒ y makes an acute angle with at least k elements of M.

Examples in R2
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Alternative definition

Characterization
M is a PkSS ⇐⇒ For any hyperplane, at least k elements of M point on
each side of the hyperplane.

Examples in R2
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Cardinal of positive k-bases

Proposition
Let DRn be a positive basis of Rn. Then n + 1 ≤ |DRn | ≤ 2n.

Can this be generalized ?
Let us try...

Remark

The hyperplane characterization implies a lower bound of 2k + n − 1
on the size of a PkSS. Tight (Marcus, 1984).
Digraphs can be used to create positive k-bases. In that case, the
maximal size is 2kn.
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PkSSs and Polytope theory

Definition
Let M ∈ Mn,m(R). Any full rank matrix B such that MB⊤ = 0 is called a
Gale diagram of M.

Theorem

Suppose M =

[
P

1 . . . 1

] Vertices of a well chosen polytope.

. Then any Gale diagram of M is a PkSS.
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Polytopes and cardinality of positive k-bases

Theorem

Let D(k)
Rn be a positive k-basis of Rn. Then :

2k + n − 1 ≤ |D(k)
Rn | ≤ kn(n + 1)k−1

Remark
The lower bound is tight (eg: pentagon).
The upper bound might not be. (Wotzlaw, 2009)
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A new tool for characterizing PkSSs

Definition (new !)
Let k ≥ 1 and M ⊂ Rn\{0}. The k-cosine measure of M is:

cmk(M) := min
v ̸=0

max
S⊂M
|S|=k

min
s∈S

s⊤v
∥s∥.∥v∥

.

Theorem
M is a PkSS if and only if cmk(M) > 0.

Remark
cm1(M) = cm(M).
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Alternative definition

Theorem
Let k ≥ 1 and M ⊂ Rn\{0}. Then:

cmk(M) = min
S⊂M

|S|=|M|−k+1

cm(S).

Remark
cm(M) is computed by finding a vector as far as possible from its
closest neighbor in M.

cmk(M) is computed by finding a vector as far as possible from its kth

closest neighbor in M.
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Examples

Remark
cm1(M) is computed by finding a vector as far as possible from its closest
neighbor in M.

Computing the cosine measure:

Examples

cos(3π
8 ) ≃ 0.38 cos(2π

10 ) ≃ 0.809
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Examples

Remark
cm2(M) is computed by finding a vector as far as possible from its second
closest neighbor in M.

Computing the 2-cosine measure:

Examples

cos(3π
8 ) ≃ 0.38 cos(2π

5 ) ≃ 0.309
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Examples

Remark
cm3(M) is computed by finding a vector as far as possible from its third
closest neighbor in M.

Computing the 3-cosine measure:

Examples

cos(5π
8 ) ≃ −0.38 cos(3π

5 ) ≃ −0.309
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Basic remarks of the k-cosine measure

There is no easy way to compute the k-cosine measure of a given family.
Let us focus on finding bounds.

Remark
Let k < l . Then cmk(M) ≥ cml(M).

Let N ⊆ M. Then cmk(N) ≤ cmk(M).

If cm(M) = α, duplicating M creates a PkSS whose k-cosine measure
is α.
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Rotating PSSs

Proposition
Let DRn ⊂ Rn\{0} be an OSPB. Stacking together k rotations of DRn

creates a PkSS D
(k)
Rn satisfying:

cmk(D
(k)
Rn ) ≥ cm(DRn).

Remark
Unfortunately, this PkSS might not be a positive k-basis.

PkSSs and their use in DFO June 2023 24 / 27



Rotating PSSs

Proposition
Let DRn ⊂ Rn\{0} be an OSPB. Stacking together k rotations of DRn

creates a PkSS D
(k)
Rn satisfying:

cmk(D
(k)
Rn ) ≥ cm(DRn).

Remark
Unfortunately, this PkSS might not be a positive k-basis.

PkSSs and their use in DFO June 2023 24 / 27



Rotating minimal bases

Theorem
Rotating minimal positive bases can create positive k-bases.

Idea: apply small rotations.
Note: this technique only works for minimal positive bases !

Examples in R2
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Rotating minimal bases

Theorem
Rotating minimal positive bases can create positive k-bases.

Idea: apply small rotations.
Note: this technique only works for minimal positive bases !

Examples in R2

⇐= non-minimal P2SS! ⇐= positive
2-basis!
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Rotating minimal bases

Theorem
Rotating minimal positive bases can create positive k-bases.

Idea: apply small rotations.
Note: this technique only works for minimal positive bases !

Examples in R2

⇐= positive
2-basis!

⇐= positive 2-basis !
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Conclusion
PkSSs are a generalization of PSSs.

New tools such as the k-cosine measure can be used to study them.

Perspectives
Finding new ways to build "nice" PkSSs.

Using PkSSs in Derivative Free Algorithms.
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Thanks for your attention !
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