

S. Kerleau, G. Jarry-Bolduc, C. Royer, W. Hare

SIAM, Seattle June 2023

[Cosine measure](#page-25-0)

3 [Positive k-Spanning Sets](#page-39-0)

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize $f(x)$?

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize $f(x)$? (Assumption: We cannot rely on ∇f).

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize $f(x)$? (Assumption: We cannot rely on ∇f).

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize $f(x)$? (Assumption: We cannot rely on ∇f).

We use derivative free algorithms. Basic idea:

• Inputs: A good candidate x_0 , a set $D = \{d_1, \ldots, d_s\}$.

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize $f(x)$? (Assumption: We cannot rely on ∇f).

- Inputs: A good candidate x_0 , a set $D = \{d_1, \ldots, d_s\}$.
- For all *i*, compare $f(x_0)$ to $f(x_0 + \alpha d_i)$.

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize $f(x)$? (Assumption: We cannot rely on ∇f).

- Inputs: A good candidate x_0 , a set $D = \{d_1, \ldots, d_s\}$.
- For all *i*, compare $f(x_0)$ to $f(x_0 + \alpha d_i)$.
- If $f(x_0)$ is smaller, decrease α .

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize $f(x)$? (Assumption: We cannot rely on ∇f).

- Inputs: A good candidate x_0 , a set $D = \{d_1, \ldots, d_s\}$.
- For all *i*, compare $f(x_0)$ to $f(x_0 + \alpha d_i)$.
- If $f(x_0)$ is smaller, decrease α .
- Otherwise replace x_0 with a better candidate.

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize $f(x)$? (Assumption: We cannot rely on ∇f).

We use derivative free algorithms. Basic idea:

- Inputs: A good candidate x_0 , a set $D = \{d_1, \ldots, d_s\}$.
- For all *i*, compare $f(x_0)$ to $f(x_0 + \alpha d_i)$.
- If $f(x_0)$ is smaller, decrease α .
- Otherwise replace x_0 with a better candidate.

If the elements of D are well spread in \mathbb{R}^n , the algorithm will converge.

Definition

A PSS spans \mathbb{R}^n with positive linear combinations. A positive basis is minimal for this property.

Remark

If the columns of matrix M form a PSS, we say that M is a PSS.

[PkSSs and their use in DFO](#page-0-0) June 2023 4 / 27

Definition

A PSS spans \mathbb{R}^n with positive linear combinations. A positive basis is minimal for this property.

Remark

Definition

A PSS spans \mathbb{R}^n with positive linear combinations. A positive basis is minimal for this property.

Examples in
$$
\mathbb{R}^2
$$

\n
$$
\begin{bmatrix}\n1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1\n\end{bmatrix}
$$
 is a positive basis. $\begin{bmatrix}\n1 & 0 & -1 \\
0 & 1 & -1\n\end{bmatrix}$ too.

Remark

Definition

A PSS spans \mathbb{R}^n with positive linear combinations. (or non-negative.) A positive basis is minimal for this property.

Examples in
$$
\mathbb{R}^2
$$

\n $\begin{bmatrix}\n1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1\n\end{bmatrix}$ is a positive basis. $\begin{bmatrix}\n1 & 0 & -1 \\
0 & 1 & -1\n\end{bmatrix}$ too.
\ne.g: $\begin{bmatrix}\n1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1\n\end{bmatrix}\n\begin{bmatrix}\n3 \\
0 \\
4\n\end{bmatrix} = \begin{bmatrix}\n3 \\
-4\n\end{bmatrix}$ and $\begin{bmatrix}\n1 & 0 & -1 \\
0 & 1 & -1\n\end{bmatrix}\n\begin{bmatrix}\n7 \\
0 \\
4\n\end{bmatrix} = \begin{bmatrix}\n3 \\
-4\n\end{bmatrix}$.

Remark

Definition

A PSS spans \mathbb{R}^n with positive linear combinations. A positive basis is minimal for this property.

Remark

Definition

A PSS spans \mathbb{R}^n with positive linear combinations. A positive basis is minimal for this property.

Examples in
$$
\mathbb{R}^2
$$

\n $\begin{bmatrix}\n1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1\n\end{bmatrix}$ is a positive basis. $\begin{bmatrix}\n1 & 0 & -1 \\
0 & 1 & -1\n\end{bmatrix}$ too.
\n $\begin{bmatrix}\n1 & 0 & -2 & 1 \\
0 & 1 & 1 & -2\n\end{bmatrix}$ is a *PSS*. $\begin{bmatrix}\n0 & -2 & 1 \\
1 & 1 & -2\n\end{bmatrix}$ is a positive basis.

Remark

Cardinal

Proposition

The smallest possible size for a positive basis of \mathbb{R}^n is $n+1$. The biggest possible size is 2n.

Proof (idea)

- Lower bound: a PSS must clearly be larger than a linear basis.
- Upper bound: Trickier. Proven using linear programming arguments.

Farkas Lemma

Lemma

Let $M \in \mathbb{R}^{n,m}$, let $b \in \mathbb{R}^n$. Exactly one of the two following assertions is true:

- Equation $Mx = b$ has a solution $x \geq 0$.
- Inequation y \top M \geq 0 has a solution y such that y \top b $<$ 0.

Farkas Lemma

Lemma

Let $M \in \mathbb{R}^{n,m}$, let $b \in \mathbb{R}^n$. Exactly one of the two following assertions is true:

- Equation $Mx = b$ has a solution $x \ge 0$. Always true for PSSs.
- Inequation y \top M \geq 0 has a solution y such that y \top b $<$ 0.

Remark

When M is a PSS, the second assertion is false for all b !

Characterization

M is a PSS \iff There is no $y \neq 0$ having an acute angle with every element of M.

Characterization

M is a PSS \iff There is no $y \neq 0$ having an acute angle with every element of M.

Characterization

M is a PSS \iff There is no $y \neq 0$ having an acute angle with every element of M.

Characterization

M is a PSS \iff There is no y \neq 0 having an acute angle with every element of M. Only a finite number of checks are required !

[Positive k-Spanning Sets](#page-39-0)

Definition

Let $M = \{d_1, \ldots, d_m\} \subset \mathbb{R}^n$. The cosine measure of M is defined as:

$$
\mathit{cm}(M) := \min_{\mathsf{v} \neq \mathsf{0}} \max_{i \in [1,m]} \frac{\mathsf{d_i}^\top \mathsf{v}}{\|\mathsf{d_i}\|.\|\mathsf{v}\|}.
$$

Characterization

Definition

Let $M = \{d_1, \ldots, d_m\} \subset \mathbb{R}^n$. The cosine measure of M is defined as:

$$
\mathit{cm}(M) := \min_{\mathsf{v} \neq \mathsf{0}} \max_{i \in [1,m]} \frac{\mathsf{d_i}^\top \mathsf{v}}{\|\mathsf{d_i}\|.\|\mathsf{v}\|}.
$$

Characterization

Definition

Let $M = \{d_1, \ldots, d_m\} \subset \mathbb{R}^n$. The cosine measure of M is defined as:

$$
\mathit{cm}(M) := \min_{\mathsf{v} \neq \mathsf{0}} \max_{i \in [1,m]} \frac{\mathsf{d_i}^\top \mathsf{v}}{\|\mathsf{d_i}\|.\|\mathsf{v}\|}.
$$

Characterization

Definition

Let $M = \{d_1, \ldots, d_m\} \subset \mathbb{R}^n$. The cosine measure of M is defined as:

$$
\mathit{cm}(M) := \min_{\mathsf{v} \neq \mathsf{0}} \max_{i \in [1,m]} \frac{\mathsf{d_i}^\top \mathsf{v}}{\|\mathsf{d_i}\|.\|\mathsf{v}\|}.
$$

Characterization

Computing the cosine measure

Theorem

Let $D_{\mathbb{R}^n}$ be a positive basis of \mathbb{R}^n .

• If
$$
|D_{\mathbb{R}^n}| = 2n
$$
, then $cm(D_{\mathbb{R}^n}) \leq \frac{1}{\sqrt{n}}$.

• If
$$
|D_{\mathbb{R}^n}| = n + 1
$$
 then $cm(D_{\mathbb{R}^n}) \leq \frac{1}{n}$.

Computing the cosine measure

Theorem

Let $D_{\mathbb{R}^n}$ be a positive basis of \mathbb{R}^n .

• If
$$
|D_{\mathbb{R}^n}| = 2n
$$
, then $cm(D_{\mathbb{R}^n}) \leq \frac{1}{\sqrt{n}}$.

• If
$$
|D_{\mathbb{R}^n}| = n + 1
$$
 then cm $(D_{\mathbb{R}^n}) \leq \frac{1}{n}$.

• It is better to use PSSs whose cosine measure is close to 1 for optimization purposes...

Computing the cosine measure

Theorem

Let $D_{\mathbb{R}^n}$ be a positive basis of \mathbb{R}^n .

If $|D_{\mathbb{R}^n}|=2n$, then $cm(D_{\mathbb{R}^n})\leq \frac{1}{\sqrt{n}}$ $\frac{1}{n}$.

• If
$$
|D_{\mathbb{R}^n}| = n + 1
$$
 then cm $(D_{\mathbb{R}^n}) \leq \frac{1}{n}$.

- It is better to use PSSs whose cosine measure is close to 1 for optimization purposes...
- ...However, algorithms to find the cosine measure of a PSS are exponential in time.

Orthogonally structured positive bases

Definition

Positive basis $D_{\mathbb{R}^n}$ of \mathbb{R}^n is an OSPB if:

• It can be written as a partition of positive bases for smaller linear spaces:

$$
D_{\mathbb{R}^n}=D_{\mathbb{L}_1}\cup\cdots\cup D_{\mathbb{L}_s}.
$$

• These bases are pairwise orthogonal and of minimal size.

Examples $\begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix}$ 0 1 0 −1 $\overline{1}$ $\overline{}$ 0 1 4 0 −5 2 0 0 −2 0 0 3 5 0 −8 1 $\overline{1}$ $\sqrt{ }$ \vert 1 −1 2 −1 −1 1 −1 −1 1 0 1 −1 −1 0 1 1 $\vert \cdot$

Orthogonally structured positive bases

Definition

Positive basis $D_{\mathbb{R}^n}$ of \mathbb{R}^n is an OSPB if:

• It can be written as a partition of positive bases for smaller linear spaces:

$$
D_{\mathbb{R}^n}=D_{\mathbb{L}_1}\cup\cdots\cup D_{\mathbb{L}_s}.
$$

• These bases are pairwise orthogonal and of minimal size.

Examples $\begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix}$ 0 1 0 −1 $\overline{1}$ $\overline{}$ 0 1 4 0 −5 $2 \t0 \t0 \t -2 \t0$ 0 3 5 0 −8 1 $\overline{1}$ $\sqrt{ }$ \vert 1 −1 2 −1 −1 1 −1 −1 1 0 1 −1 −1 0 1 1 $\vert \cdot$

Cosine measure of an OSPB

Theorem (new !)

The cosine measure of an OSPB can be computed in polynomial time !
Cosine measure of an OSPB

Theorem (new !)

The cosine measure of an OSPB can be computed in polynomial time !

Algorithm: cosine measure of an OSPB

• Step 1: Find an orthogonal decomposition for your basis.

Cosine measure of an OSPB

Theorem (new !)

The cosine measure of an OSPB can be computed in polynomial time !

Algorithm: cosine measure of an OSPB

- Step 1: Find an orthogonal decomposition for your basis.
- Step 2: For any set $D_{\mathbb{L}_i}$ in the decomposition, compute its induced cosine measure c_i.

Cosine measure of an OSPB

Theorem (new !)

The cosine measure of an OSPB can be computed in polynomial time !

Algorithm: cosine measure of an OSPB

- Step 1: Find an orthogonal decomposition for your basis.
- Step 2: For any set $D_{\mathbb{L}_i}$ in the decomposition, compute its induced cosine measure c_i.

• Step 3: Return
$$
\frac{1}{\sqrt{\sum_{i} c_i^{-2}}}
$$
.

Applications

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize $f(x)$? (Assumption: We cannot rely on ∇f).

We use derivative free algorithms. Basic idea:

- Inputs: A good candidate x_0 , a set $D = \{d_1, \ldots, d_s\}$.
- For all *i*, compare $f(x_0)$ to $f(x_0 + \alpha d_i)$.
- If $f(x_0)$ is smaller, decrease α .
- Otherwise replace x_0 with a better candidate.

Applications

Question

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a smooth function. How can we minimize $f(x)$? (Assumption: We cannot rely on ∇f).

We use derivative free algorithms. Basic idea:

- Inputs: A good candidate x_0 , a set $D = \{d_1, \ldots, d_s\}$.
- For all *i*, compare $f(x_0)$ to $f(x_0 + \alpha d_i)$.
- If $f(x_0)$ is smaller, decrease α .
- Otherwise replace x_0 with a better candidate.

What if we have trouble computing $f(x_0 + \alpha d_i)$?

Positive k-spanning sets, Positive k-bases

Definition

A PkSS remains positively spanning when $k - 1$ of its elements are removed. A positive k -basis is a minimal P k SS.

Examples of positive 2-bases in \mathbb{R}^2

$$
\begin{bmatrix} 1 & 0 & -1 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 & 1 & -1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & -1 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 & 1 & -1 \end{bmatrix}
$$

Remark

 $P1SS \iff PSS$

Positive k-spanning sets, Positive k-bases

Definition

At least k elements must be removed from a $PkSS$ before it stops being positively spanning. A positive k-basis is a minimal PkSS.

Examples of positive 2-bases in \mathbb{R}^2

$$
\begin{bmatrix} 1 & 0 & -1 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 & 1 & -1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & -1 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 & 1 & -1 \end{bmatrix}
$$

Remark

 $P1SS \iff PSS$

Characterization

M is a PkSS \iff For all y \neq 0, vector y $^\top \mathsf{M}$ has at least k positive coordinates.

Characterization

M is a PkSS \iff For all y \neq 0, vector y $^\top \mathsf{M}$ has at least k positive coordinates. \iff y makes an acute angle with at least k elements of M.

Characterization

M is a PkSS \iff For any hyperplane, at least k elements of M point on each side of the hyperplane.

Cardinal of positive k-bases

Proposition

Let $D_{\mathbb{R}^n}$ be a positive basis of \mathbb{R}^n . Then $n+1 \leq |D_{\mathbb{R}^n}| \leq 2n$.

Can this be generalized ? Let us try...

Cardinal of positive k-bases

Proposition

Let $D_{\mathbb{R}^n}$ be a positive basis of \mathbb{R}^n . Then $n+1 \leq |D_{\mathbb{R}^n}| \leq 2n$.

Can this be generalized ? Let us try...

Remark

 \bullet The hyperplane characterization implies a lower bound of 2k + n - 1 on the size of a PkSS. Tight (Marcus, 1984).

Cardinal of positive k-bases

Proposition

Let $D_{\mathbb{R}^n}$ be a positive basis of \mathbb{R}^n . Then $n+1 \leq |D_{\mathbb{R}^n}| \leq 2n$.

Can this be generalized ? Let us try...

Remark

- The hyperplane characterization implies a lower bound of $2k + n 1$ on the size of a PkSS. Tight (Marcus, 1984).
- Digraphs can be used to create positive k-bases. In that case, the maximal size is 2kn.

PkSSs and Polytope theory

Definition

Let $M \in M_{n,m}(\mathbb{R})$. Any full rank matrix B such that $MB^{\top} = 0$ is called a Gale diagram of M.

Theorem

Suppose
$$
M = \begin{bmatrix} & P & \\ 1 & \dots & 1 \end{bmatrix}
$$
. Then any Gale diagram of M is a PKSS.

\n $M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

Polytopes and cardinality of positive *k*-bases

Theorem

Let
$$
D_{\mathbb{R}^n}^{(k)}
$$
 be a positive k-basis of \mathbb{R}^n . Then:

$$
2k + n - 1 \leq |D_{\mathbb{R}^n}^{(k)}| \leq kn(n+1)^{k-1}
$$

Remark

- The lower bound is tight (eg: pentagon).
- The upper bound might not be. (Wotzlaw, 2009)

[Positive k-Spanning Sets](#page-39-0)

A new tool for characterizing PkSSs

Definition (new !) Let $k \geq 1$ and $M \subset \mathbb{R}^n \setminus \{0\}$. The k-cosine measure of M is: $cm_k(M):=\min\limits_{\substack{v\neq 0 \ \text{S}\subset M\ |S|=k}}$ min s∈S s ⊤v $rac{1}{\|S\|. \|V\|}$

A new tool for characterizing PkSSs

Definition (new !) Let $k \geq 1$ and $M \subset \mathbb{R}^n \setminus \{0\}$. The k-cosine measure of M is: $cm_k(M):=\min\limits_{\substack{v\neq 0\ S\subset M\ |S|=k}}$ min s∈S s ⊤v $rac{1}{\|S\|. \|V\|}$

Remark

 $cm_1(M) = cm(M)$.

A new tool for characterizing PkSSs

Definition (new !) Let $k \geq 1$ and $M \subset \mathbb{R}^n \setminus \{0\}$. The k-cosine measure of M is:

$$
cm_k(M):=\min_{v\neq 0}\max_{\substack{S\subset M\\|S|=k}}\min_{s\in S}\frac{s^{\top}v}{\|s\|.\|v\|}.
$$

Theorem

M is a PkSS if and only if $cm_k(M) > 0$.

Remark

 $cm₁(M) = cm(M).$

Theorem

Let $k \geq 1$ and $M \subset \mathbb{R}^n \backslash \{0\}$. Then:

$$
cm_k(M) = \min_{\substack{S \subset M \\ |S| = |M| - k + 1}} cm(S).
$$

Theorem

Let $k \geq 1$ and $M \subset \mathbb{R}^n \backslash \{0\}$. Then:

$$
cm_k(M) = \min_{\substack{S \subset M \\ |S| = |M| - k + 1}} cm(S).
$$

Remark

 \bullet cm(M) is computed by finding a vector as far as possible from its closest neighbor in M.

Theorem

Let $k \geq 1$ and $M \subset \mathbb{R}^n \backslash \{0\}$. Then:

$$
cm_k(M) = \min_{\substack{S \subset M \\ |S| = |M| - k + 1}} cm(S).
$$

Remark

- \bullet cm(M) is computed by finding a vector as far as possible from its closest neighbor in M.
- cm $_k(\mathsf{M})$ is computed by finding a vector as far as possible from its k^th closest neighbor in M.

Examples

Remark

 $cm₁(M)$ is computed by finding a vector as far as possible from its closest neighbor in M.

Computing the cosine measure:

Examples

Examples

Remark

 $cm₂(M)$ is computed by finding a vector as far as possible from its second closest neighbor in M.

Computing the 2-cosine measure:

Examples

Examples

Remark

 $cm₃(M)$ is computed by finding a vector as far as possible from its third closest neighbor in M.

Computing the 3-cosine measure:

There is no easy way to compute the k-cosine measure of a given family. Let us focus on finding bounds.

There is no easy way to compute the k-cosine measure of a given family. Let us focus on finding bounds.

Remark

• Let $k < l$. Then $cm_k(M) \geq cm_l(M)$.

There is no easy way to compute the k -cosine measure of a given family. Let us focus on finding bounds.

Remark

- Let $k < l$. Then $cm_k(M) \geq cm_l(M)$.
- Let $N \subseteq M$. Then $cm_k(N) \leq cm_k(M)$.

There is no easy way to compute the k -cosine measure of a given family. Let us focus on finding bounds.

Remark

- Let $k < l$. Then $cm_k(M) \geq cm_l(M)$.
- Let $N \subseteq M$. Then $cm_k(N) \leq cm_k(M)$.
- If cm(M) $= \alpha$, duplicating M creates a PkSS whose k-cosine measure is α .

Rotating PSSs

Proposition

Let $D_{\mathbb{R}^n} \subset \mathbb{R}^n \backslash \{0\}$ be an OSPB. Stacking together k rotations of $D_{\mathbb{R}^n}$ creates a PkSS $D^{(k)}_{\mathbb{R}^n}$ satisfying:

 $cm_k(D_{\mathbb{R}^n}^{(k)})\geq cm(D_{\mathbb{R}^n}).$

Rotating PSSs

Proposition

Let $D_{\mathbb{R}^n} \subset \mathbb{R}^n \backslash \{0\}$ be an OSPB. Stacking together k rotations of $D_{\mathbb{R}^n}$ creates a PkSS $D^{(k)}_{\mathbb{R}^n}$ satisfying:

$$
cm_k(D_{\mathbb{R}^n}^{(k)})\geq cm(D_{\mathbb{R}^n}).
$$

Remark

Unfortunately, this PkSS might not be a positive k-basis.

Rotating minimal bases

Theorem

Rotating minimal positive bases can create positive k-bases.

Idea: apply small rotations.

Note: this technique only works for minimal positive bases !

Rotating minimal bases

Theorem

Rotating minimal positive bases can create positive k-bases.

Idea: apply small rotations.

Note: this technique only works for minimal positive bases !

Rotating minimal bases

Theorem

Rotating minimal positive bases can create positive k-bases.

Idea: apply small rotations.

Note: this technique only works for minimal positive bases !

Conclusion

PkSSs are a generalization of PSSs.
Conclusion

- PkSSs are a generalization of PSSs.
- New tools such as the *k*-cosine measure can be used to study them.

Conclusion

- PkSSs are a generalization of PSSs.
- New tools such as the *k*-cosine measure can be used to study them.

Perspectives

• Finding new ways to build "nice" PkSSs.

Conclusion

- PkSSs are a generalization of PSSs.
- \bullet New tools such as the *k*-cosine measure can be used to study them.

Perspectives

- Finding new ways to build "nice" PkSSs.
- Using PkSSs in Derivative Free Algorithms.

Thanks for your attention !