Characterizing PSSs through graph theory

S. Kerleau, C. Royer, D. Cornaz

DFOS, Padova June 2024

3 Characterizing positive bases

Why should we care ?

Question

How to minimize a smooth function f? (∇f is not available).

Why should we care ?

$\mathsf{Question}$

How to minimize a smooth function f? (∇f is not available).

Through direct search:

- Inputs: $x \in \mathbb{R}^n$, $M = \{c_1, \ldots, c_s\} \subset \mathbb{R}^n$.
- Compare f(x) to each $f(x + \alpha c_i)$.
- If f(x) is the smallest, decrease α .
- Otherwise, $x \leftarrow x_0 + \alpha c_i$.

Why should we care ?

$\mathsf{Question}$

How to minimize a smooth function f? (∇f is not available).

Through direct search:

- Inputs: $x \in \mathbb{R}^n$, $M = \{c_1, \ldots, c_s\} \subset \mathbb{R}^n$.
- Compare f(x) to each $f(x + \alpha c_i)$.
- If f(x) is the smallest, decrease α .
- Otherwise, $x \leftarrow x_0 + \alpha c_i$.

If the elements of M are 'well spread' in \mathbb{R}^n , the algorithm converges.

Definition

A **PSS** is a set of vectors well spread in \mathbb{R}^n . A **positive basis** is minimal for this property.

Definition

A **PSS** is a set of vectors well spread in \mathbb{R}^n . A **positive basis** is minimal for this property.

Definition

A **PSS** is a matrix M such that $y^{\top}M \le 0^{\top}$ implies y = 0. A **positive basis** is minimal for this property.

Definition

A **PSS** is a matrix M such that $y^{\top}M \le 0^{\top}$ implies y = 0. A **positive basis** is minimal for this property.

Definition

A **PSS** is a matrix M such that $y^{\top}M \leq 0^{\top}$ implies y = 0. A **positive basis** is minimal for this property.

Quiz

We're looking for transformations that leave the 'positively spanning' property invariant.

Definition (Structural equivalence \equiv)

M is structurally equivalent to *N* if M = NP where *P* is a permutation matrix,

Definition (Structural equivalence \equiv)

M is structurally equivalent to *N* if M = NPD where *P* is a permutation matrix, *D* is diagonal with positive entries

Quiz

Definition (Structural equivalence \equiv)

M is structurally equivalent to *N* if M = BNPD where *P* is a permutation matrix, *D* is diagonal with positive entries and *B* is invertible.

Remark

- If $M \equiv N$: $\begin{cases}
 M PSS \iff N PSS. \\
 M positive basis \iff N positive basis.
 \end{cases}$
- M positive basis \implies $n+1 \le |M| \le 2n$.

Remark

- If $M \equiv N$: $\begin{cases}
 M PSS \iff N PSS. \\
 M positive basis \iff N positive basis.
 \end{cases}$
- *M* positive basis \implies $n+1 \le |M| \le 2n$.

•
$$\begin{bmatrix} I_n & -1_n \end{bmatrix}$$
 and $\begin{bmatrix} I_n & -I_n \end{bmatrix}$ are positive bases, where $-1_n = \begin{bmatrix} -1 \\ \cdots \\ -1 \end{bmatrix}$

Remark

- If $M \equiv N$: $\begin{cases}
 M PSS \iff N PSS. \\
 M positive basis \iff N positive basis.
 \end{cases}$
- *M* positive basis \implies $n+1 \le |M| \le 2n$.

•
$$\begin{bmatrix} I_n & -1_n \end{bmatrix}$$
 and $\begin{bmatrix} I_n & -I_n \end{bmatrix}$ are positive bases, where $-1_n = \begin{bmatrix} -1 \\ \dots \\ -1 \end{bmatrix}$.

• PSSs span \mathbb{R}^n with positive combinations. obviously...

Characterizing positive bases

Proposition

$$\begin{array}{lll} M \ \text{positive basis and} \ |M| = n+1 & \Longrightarrow & M \equiv \begin{bmatrix} I_n & -I_n \end{bmatrix}. \\ M \ \text{positive basis and} \ |M| = 2n & \Longrightarrow & M \equiv \begin{bmatrix} I_n & -I_n \end{bmatrix}. \end{array}$$

Application

$$In \ \mathbb{R}^{3}, any \ non-minimal \ PSS \ of \ size \ 5 \ satisfies \ M \equiv \begin{bmatrix} 1 & 0 & 0 & -1 & \times \\ 0 & 1 & 0 & -1 & \times \\ 0 & 0 & 1 & -1 & \times \end{bmatrix}.$$

3 Characterizing positive bases

Nec matrices

Definition (Negative echelon column matrix)

N $\in \mathbb{R}^{n \times s}$ is a **nec matrix** if there exists a sequence $z_0 = 1 < z_1 < z_2 < \cdots < z_{s-1} \le n$ of integers satisfying **1** For all $j \in \llbracket 1, s - 1 \rrbracket$, for all $i \in \llbracket z_j, n \rrbracket$, $N_{i,j} = 0$. **2** For all $j \in \llbracket 1, s - 1 \rrbracket$, for all $i \in \llbracket z_{j-1}, z_j - 1 \rrbracket$, $N_{i,j} < 0$. **3** $N_{i,s} < 0$, for all $i \ge z_{s-1}$.

Nec matrices

Definition (Negative echelon column matrix)

- $\mathsf{N} \in \mathbb{R}^{n imes s}$ is a **nec matrix** if
- Each column ends with zeros.
- 2 Each has less zeros than its predecessor.
- 3 Each has a block of -1 above the zeros.
- The other values are arbitrary.

Example

except the last.

the first column starts with it.

$\mathsf{Nec} \text{ and } \mathsf{PSS}$

Theorem

$$M \equiv \begin{bmatrix} I_n & N & X \end{bmatrix} \text{ (with } N \text{ nec)} \implies M \quad PSS$$

Proof.

Simply note that $-1_n \in cone(M)$!

Strong edge-connection

Definition (Strongly connected)

A digraph G is strongly connected if for each two vertices u and v, an oriented path joins u to v.

Not strongly connected: no path from red to blue.

Strong edge-connection

Definition (Strongly connected)

A digraph G is strongly connected if for each two vertices u and v, an oriented path joins u to v.

A strongly connected digraph G.

Definition (Ear)

An ear is a directed path with no vertices in G, except the extremities.

Definition (Ear)

An ear is a directed path with no vertices in G, except the extremities.

Definition (Ear)

An ear is a directed path with no vertices in G, except the extremities.

Ears

Definition (Ear)

An ear is a directed path with no vertices in G, except the extremities.

Three ears of the black digraph G.

Ears

Definition (Ear)

An ear is a directed path with no vertices in G, except the extremities.

Not ears !

Characterization

G strongly connected \iff G can be built from a sequence of ears.

Characterization

G strongly connected \iff G can be built from a sequence of ears.

Characterization

G strongly connected \iff G can be built from a sequence of ears.

Characterization

G strongly connected \iff G can be built from a sequence of ears.

PSSs arise from strongly connected digraphs through network matrices.

Draw your favourite connected digraph G.

PSSs arise from strongly connected digraphs through network matrices.

PSSs arise from strongly connected digraphs through network matrices.

The n^{th} column is the n^{th} arc expressed in the basis.

PSSs arise from strongly connected digraphs through network matrices.

PSSs arise from strongly connected digraphs through network matrices.

All network matrices are equivalent.

PSSs arise from strongly connected digraphs through network matrices.

PSSs arise from strongly connected digraphs through network matrices.

Nec matrices

Definition (Negative echelon column matrix)

- $\mathsf{N} \in \mathbb{R}^{n imes s}$ is a **nec matrix** if
- Each column ends with zeros.
- 2 Each has less zeros than its predecessor.
- Each has a block of -1 above the zeros.
- The other values are arbitrary.

Example

except the last.

the first column starts with it.

G strongly connected \iff G associated to $[I_n \ N \ X]$. Let's prove it.

Add an ear. What happens ?

The previous matrix is contained in the new one...

$$\begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 \end{bmatrix}$$

...with zeros ending its columns.

$$\begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 \end{bmatrix}$$

The new column ends with -1.

 $\begin{bmatrix} -1 & 1 \\ I_3 & -1 & 0 \\ 0 & -1 \end{bmatrix}$

Add another ear.

Same phenomenon ! nec matrix !

Γ	-1	1	0]
	-1	0	0
	0	-1	0
⊥6	0	0	-1
	0	0	-1
	0	0	-1

Non-ears break the pattern.

Γ	-1	1	0]
	-1	0	0
	0	-1	0
	0	0	-1
	0	0	-1
	0	0	-1
	0	0	0

Non-ears break the pattern.

-	-1	1	0	07
	-1	0	0	1
	0	-1	0	1
Τz	0	0	-1	0
- /	0	0	-1	0
	0	0	-1	0
	0	0	0	1

Trivial ears add useless columns.

Graphs and PSSs

Theorem

Graph strongly connected \iff its network matrices are PSSs !

Remark

Characterizations of strongly connected digraphs can be restated in the language of linear algebra !

Characterization

 $\begin{array}{lll} G \mbox{ strongly connected } \Longleftrightarrow \mbox{ a network matrix is } \begin{bmatrix} I & N & X \end{bmatrix} (N \mbox{ nec}). \\ G \mbox{ not strongly connected } \Longleftrightarrow \mbox{ it is } \begin{bmatrix} I & N & X \\ 0 & 0 & A \end{bmatrix} (A \mbox{ non-negative}). \end{array}$

Characterization

G is strongly connected.

Characterization

Characterization

The property can be generalized !

Characterization

$$\begin{array}{lll} M \ PSS & \iff & M \equiv \begin{bmatrix} I & N & X \end{bmatrix} \ (N \ nec). \\ M \ not \ PSS & \iff & M \equiv \begin{bmatrix} I & N & X \\ 0 & 0 & A \end{bmatrix} \ (A \ non-negative). \end{array}$$

A very nice conjecture

Characterization

$$M PSS \iff it is equivalent to \begin{bmatrix} I & N & X \end{bmatrix} (N nec).$$

$$M not PSS \iff it is equivalent to \begin{bmatrix} I & N & X \\ 0 & 0 & A \end{bmatrix} (A non-negative).$$

...well, maybe not

Nec matrices

Definition (Negative echelon column matrix)

- $\mathsf{N} \in \mathbb{R}^{n imes s}$ is a **nec matrix** if
- Each column ends with zeros.
- 2 Each has less zeros than its predecessor.
- Sech has a block of -1 above the zeros.
- The other values are arbitrary. Not for positive bases !

Example

$\begin{bmatrix} -1 & \times & \times \\ 0 & -1 & \times \\ 0 & -1 & \times \\ 0 & -1 & \times \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix}$,	$\begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	× × -1 -1 0 0	× × × -1 0	× × × × × × -1	,	$\begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	× -1 0 0 0	× × -1 -1 -1	
---	---	--	------------------------------	------------------------	----------------------------------	---	--	------------------------	--------------------------	--

except the last.

the first column starts with it.

We see three 'arbitrary' blocks.

Let's list the restrictions on these blocks.

• Vectors in $cone(X_i)$ do not have <u>one</u> positive coordinate.

• Vectors in $cone(X_i)$ do not have <u>one</u> positive coordinate.

• Vectors in $cone(X_i)$ are not negative.

• Vectors in $cone(X_i)$ do not have <u>one</u> positive coordinate.

- Vectors in $cone(X_i)$ are not negative.
- \implies In X_1 , each cross is a 0.

• The max entry of $x \in cone(X_i)$, when positive, is <u>not</u> unique.

• Vectors in $cone(X_i)$ are not negative.

• The max entry of $x \in cone(X_i)$, when positive, is <u>not</u> unique.

• Vectors in $cone(X_i)$ are not negative.

 \implies Columns of X_2 are positive multiples of a same $y \in \{1_2, -e_1, -e_2\}$.

• The max entry of $x \in cone(X_i)$, when positive, is <u>not</u> unique.

• Vectors in $cone(X_i)$ are not negative.

There are no other restrictions !
Characterizing bases

Definition (Critical set)

 $K(\mathbb{R}^n)$ is the set of vectors v satisfying condition 1 or 2.

1
$$v \le 0_n$$
 & $\exists i, v_i = 0.$
2 $\exists i, j, v_i = v_j = \max_{k \le n} v_k > 0$

Characterizing bases

Definition (Critical set)

 $K(\mathbb{R}^n)$ is the set of vectors v satisfying condition 1 or 2.

1
$$v \le 0_n$$
 & $\exists i, v_i = 0.$
2 $\exists i, j, v_i = v_j = \max_{k \le n} v_k > 0.$

Theorem

Near-maximal bases

Proposition

$$|M| = 2n - 1 \iff M \equiv \begin{bmatrix} -1 & 0\\ I_n & -1 & x^\top\\ 0 & -I_{n-2} \end{bmatrix}, x \in \mathbb{R}^{n-2}, x \leq 0_{n-2}.$$

Example

Basis of size 7 in
$$\mathbb{R}^4 \iff$$
 equivalent to $\begin{bmatrix} & -1 & 0 & 0 \\ & -1 & x & y \\ & 1_4 & 0 & -1 & 0 \\ & & 0 & 0 & -1 \end{bmatrix}$, $\begin{cases} x \le 0 \\ y \le 0 \end{cases}$.

Near-minimal bases

Proposition

$$|M| = n+2 \iff M \equiv \begin{bmatrix} -1_k & x \\ I_n & 0_{n-k} & -1_{n-k} \end{bmatrix}, \quad \begin{cases} 1 \le k < n, x \in \mathbb{R}^k \\ x \le 0, x_1 = 0 \end{cases}.$$

Example

Basis of size 5 in
$$\mathbb{R}^3 \iff$$
 equivalent to $\begin{bmatrix} & -1 & 0 \\ & \mathbf{1}_3 & -1 & x \\ & 0 & -1 \end{bmatrix}, x \le 0.$

Conclusion

In a nutshell

- Digraphs are pretty cool.
- The notion of PSS generalizes that of strongly connected digraph.
- Knowing so allows to find new properties of PSSs.

Perspectives

- Characterizing blocks with even more rows.
- Characterizing blocks with few columns.
- Characterizing PkSSs in a similar fashion.

Thanks for your attention !